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Abstract
Hair can be a prominent feature of characters in real-time games. In this paper, we propose hair simulation with
efficient preservation of various hair styles. Bending and twisting effects are crucial to simulate curly or wavy hair.
We propose local and global shape constraints and parallel methods to update local and global transforms to find
goal positions. All three methods show good visual quality and take only a small fraction of rendering time. This
simulation runs on the GPU and works smoothly as a part of rendering pipeline. Simulating around 20,000 strands
composed of total 0.22 million vertices takes less than 1 millisecond. Simulation parameters such as stiffness or
number of iterations for shape constraints can be manipulated by users interactively. It helps designers choose
the right parameters for various hair styles and conditions. Also the simulation can handle various situations
interactively.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Physically based modeling I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation I.6.8 [Simulation and Modeling]: Types of Simulation—Animation I.6.8 [Simulation and
Modeling]: Types of Simulation—Parallel

1. Introduction

Hair is an important part of a character. In recent video
games, hair simulation has become crucial to achieve real-
istic visual rendering of a human. Unfortunately, simulating
hair in a real-time environment is a non-trivial task because a
human has around 100,000 hair strands and it requires heavy
computation.

In this paper, we present novel methods to simulate bend-
ing and twisting effects to preserve various hair styles and
support different hair conditions by using GPU. We simu-
late 20,000 strands consisting of 0.22 million vertices in a
small fraction of rendering time.

The main contributions of this work are:

1. Parallel methods to update local and global transforms
in GPU.

2. Local shape constraints to simulate bending and twist-
ing effects in the real-time environment.

3. Global shape constraints to preserve global hair shapes
and avoid getting tangled in weird shapes during fast moving
gameplay.

2. Related Work

Generally, there are two approaches to represent hair: strand-
based and volume-based. The strand-based method uses fi-
nite vertices and edges to represent hair. In terms of dy-
namics of individual hair strands, [RCT91], [SLF08] and
[CCK05] use Mass-Spring systems. Stiff springs are re-
quired to simulate inextensibility of edges. Each particle has
one translation and two angular rotations and hair-bending
rigidity is ensured by angular springs at each joint. Due to
the stiff spring, it has a numerical instability issue.

[BW98] proposed an implicit integration method that
enables large time steps with stiff springs for cloth sim-
ulation. Implicit integration was later used in the case of
hair simulation [WL03] [CCK05] [CCK05]. Even with stiff
springs, it often requires a post-correctional process to limit
the stretching of springs [IP96] [BFA02]. The implicit inte-
gration method is not suitable for real-time application due
to the high computational cost of solving a linear system.

[HMT01] and [LK01] proposed methods to present hair
as a rigid, multi-body, serial chain. Such techniques are well-
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Figure 1: (a) and (b) are the same model. It has three regions(front, middle/top and ponytail) to assign different simulation
parameters. (c) and (d) have wavier styles.

known in the field of robotics and efficient multi-body dy-
namics algorithms have been studied for a long time [Fea07].

In this paper, we use multi-body serial chain representa-
tion to maintain local coordinate systems. However we do
not consider the hair as rigid links. Instead, we find the local
and global goal positions for vertices in hair-strand polylines
and apply shape constraints.

[RKN10] used shape matching [MHTG05] to simulate
complex hair styles. [MC11] introduced oriented particles to
simulate wide range of objects including ropes and could
avoid possible singularity problem with polar decomposi-
tion used in shape matching. Similar to shape matching, our
methods find goal positions. However, with local and global
transforms and shape constraints, we avoid using polar de-
composition.

In the volume-based hair representation, hair is consid-
ered as continuous medium in a global manner. [HMT01]
modeled complex interactions of hair using fluid dynamics.
Even with global handling of interactions of hair, individual
strand dynamics are computed to capture geometry and stiff-
ness of each hair strand. [BCN03] modeled hair using a set
of SPH particles that interact in an adaptive way. [VMT04]
proposed to use a global volumetric free-form deformation
(FFD) scheme.

In terms of constraints, we use a position-based approach
[MHHR07] for edge length and local shape constraints. Its
simplicity and stability make it suitable for real-time appli-
cations with GPU implementation.

3. Simulation Overview

In this paper, we simulate all hair strands individually us-
ing a GPU. Each hair strand is represented as a polyline. As
outlined in Algorithm 1, vertex and edge information of hair
polylines are loaded into memory and rest-state values, such
as rest lengths of edges and initial local and global trans-
forms, are computed. When simulation begins, all data get
transferred to the GPU where simulation takes place. All
simulation control properties such as external forces, stiff-
ness or head transform information are fed from CPU to
GPU on a per-frame basis.

Algorithm 1: Hair simulation outline
1 load hair data
2 precompute rest-state values
3 while simulation running do
4 compute forces such as gravity or wind
5 integrate
6 apply global shape constraints
7 while iteration do
8 apply local shape constraints
9 apply edge length constraints
10 collision handling

Bending and twisting effects are simulated as global and
local constraints. Both constraints find the goal positions and
apply constraints to each vertex to match the goal shapes.
The global constraint seeks the goal position as the initial
vertex position. In the meantime, the local constraint uses a
local frame to find the goal position. After applying shape
constraints, we apply edge length constraints [MHHR07].

3.1. Definitions

The index of vertices starts from the root of a hair strand
that is attached to a scalp. Pi is the position of vertex i in
the current time step. Zeroth time step is the rest state and
we use a right superscript to express it explicitly (i.e. P0

i ).
In this paper, we focus only on vertices in one strand when
we explain algorithms. Therefore, vertex index i is always
unique.

In case we need to explicitly clarify which coordinate sys-
tem we use, we specify it using left superscript (i.e., i−1Pi
,meaning position of vertex i in the current time step defined
in the local frame i-1). When the position is defined in the
world coordinate system, we can drop the frame index (i.e.,
wPi = Pi).

In terms of transforms, we define i−1Ti as a full trans-
formation containing rotation i−1Ri and translation i−1Li. It
transforms iPi+1 to i−1Pi+1 such that i−1Pi+1 =

i−1Ti · iPi+1.
Because of careful indexing of vertices in the strand, the fol-
lowing equation holds:
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wTi =
wT0 · 0T1 · 1T2... · i−2Ti−1 · i−1Ti (1)

In this paper, we call i−1Ti local transform and wTi global
transform. In case of vertex 0, local transform and global
transform are the same such that −1T0 =

wT0.
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Figure 2: Local frames in a hair strand

In Figure 2, local frames are defined at each vertex. xi,
yi and zi are basis vectors of local frame of vertex i in the
current time step. xi is simply defined as a normalized vector
of Pi − Pi−1. As an exception, x0 = (P1−P0)/‖P1−P0‖.
We will explain how to initialize and update transforms in
Section 4.

To describe head transform, we use wTH which transforms
the head from the rest state to the current state. wTH is an
input from user or predefined animations.

3.2. Integration

To integrate motion of hair dynamics, we use the Verlet inte-
gration scheme because it is simple and shows good numeri-
cal stability compared to the explicit Euler method. External
forces such as gravity are applied during this step. Damping
coefficient is multiplied to velocity to simulate a damping
effect.

We integrate only particles whose inverse mass is non-
zero. If the inverse mass is zero, we consider it non-movable,
update its positions following its attached objects (such as a
head), and skip rest of steps for those particles. We assign
zero inverse mass for vertex 0 and 1 so they can be animated
following head movement.

3.3. Global Shape Constraints

Before simulation begins, we save the rest positions of ver-
tices P0

i . We use these rest positions as goal positions to ap-
ply global shape constraints. In Equation (2), SG is a stiffness
coefficient for the global shape constraint. It ranges between
0 and 1. If SG is 0, there is no effect; if it is 1, the hair be-
comes completely rigid, frozen to the initial shape.

Pi +=SG(
wTH ·P0

i −Pi) (2)

In many cases, we apply global shape constraints on a part
of the hair strand such as close to root of hair. We can also
gradually reduce SG from root of hair to the end. This is
because hair seems to behave more stiffly close to root; also,
it maintains the hair style more efficiently without bringing
unnecessary extra stiffness to overall hair simulation.

The benefit of global shape constraints is that it keeps the
global shape with minimum cost. Combined with local shape
constraints, it takes almost no time to settle the simulation
and there is no visual perturbation when simulation starts.
Designers can expect that their authored hair shape will be
the initial shape. Global shape constraints also ensure that
hair does not get tangled to weird shapes during fast moving
gameplay.

3.4. Local Shape Constraints

Equation (3) looks similar to Equation (2) except it is writ-
ten in local frame and uses local stiffness coefficient SL. In
vertex-level parallel processes, Equation (3) becomes unsta-
ble and causes excessive oscillation.

i−1Pi +=SL(
i−1P0

i −i−1 Pi) (3)

Instead, we update i−1Pi−1 and i−1Pi as in Equation (4)
to achieve stable convergence.

i−1di =
i−1P0

i −i−1 Pi
i−1Pi−1−=

1
2

SL
i−1di

i−1Pi +=
1
2

SL
i−1di

(4)

In Equation (4), we get the new positions in local frames.
Eventually, we need to update their global positions using
wTi. Based on how to update local and global transforms, we
will present three methods in Section 4.

We apply local shape constraints multiple times at each
frame. User’s input can control the number of iterations. If
the hair style is very curly, then more iteration is usually
needed. In our method, we do not distinguish bending and
twisting effects but it would be possible. We simply combine
them for the sake of performance and simplicity of real-time
application.

If we apply the local shape constraints with very large
number of iterations, the resulting effect would be the same
as the global shape constraints because both shape con-
straints will converge to the rest shape when SG and SL are 1.
However, because we usually use the small number of itera-
tions and apply the global shape constraints with variable SG,
both show different effects. With global shape constraints,
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Figure 3: (a) illustrates global shape constraints and (b) illustrates local shape constraints after one iteration. To be simple, head
transform is not considered and (b) is based on Equation (3). P0

i is rest position and P̃i is intermediate position. SG = SL = 0.5.
Note that P0 and P1 are not simulated.

we need less iterations for local shape constraints and users
have more controls over simulation. Figure 3 shows rest po-
sitions and updated positions after applying global and local
shape constraints with one iteration.

Compared to shape matching [RKN10] [MHTG05], our
local shape constraint method does not require polar decom-
position and overlapping regions. Therefore, it can exploit
GPU parallelism more effectively.

3.5. Collision Handling

In Algorithm 1, collision handling is the last step. We use
simple collision objects such as a sphere to represent charac-
ter head and shoulders. We do not handle any inter-collisions
between hair and hair.

If a hair vertex is detected to have penetrated collision
objects, we simply move it to the closest surface point and
update its position.

4. Local and Global Transforms

Initializing and updating local and global transforms are the
most crucial part of this paper.

4.1. Initialize Local and Global Transforms

Initializing local and global transforms is performed when
rest-state values are computed. In Algorithm 2, we start with
vertex 0 and subsequently compute the next vertex in order.
For vertex 0, we explicitly compute basis vectors x0

0, y0
0, and

z0
0. As explained in Section 3.1, x0

0 is a normalized vector of
P0

1 −P0
0 . We choose y0

0 by cross-product x0
0 with an arbitrary

Algorithm 2: Initialize local and global transforms
1 for each strand in total hair
2 for i ← 0 to number of vertices in strand
3 if i is 0 then
4 compute basis vectors (���, ���, ���)
5 initialize �� ��from basis vectors and ���
6 else
7 compute ���� ��
8

initialize local transform ���� �� by rotation from 
vector (1, 0, 0) to ���� ��

9 initialize global transform �� ��
vector. If the arbitrary vector is coincident with x0

0, we sim-
ply choose another arbitrary vector that is orthogonal to the
previous choice.

For vertices whose indices are greater than zero, we com-
pute i−1x0

i first. Since it needs to use wT 0
i−1, the initialization

should be done in order from vertex 0. We initialize the local
transform i−1T 0

i with rotation from vector (1, 0, 0) to i−1x0
i

and translation p0
i . Finally we initialize wT 0

i using Equation
1.

4.2. Update Local and Global Transforms

Updating local and global transforms is necessary to apply
local shape constraints. This process is similar to the initial-
ization and each computation requires to use the result from
the previous one, which makes it serial process. In this sec-
tion, we present three methods. Method 1 is a serial process
within a strand. Method 2 is fully parallel in the vertex level.
Method 3 skips several key steps in the method 2 but pro-
duces good visual quality.

In method 1 presented in Algorithm 3, updating local and
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Algorithm 3: Update local and global transforms (Method 1)
1 set number of iterations

2 for iteration ← 0 to number of iterations

3 for each strand in total hair
4 for i ← 0 to number of vertices in strand

5 if i is 0 or 1 then
6 update �� � and �� � and continue
7 else
8 compute ���� �
9

apply a constraint to ���� and �� using ���� �, �� ���
and �� �

10 compute ���� �
11

update ���� � by rotation from vector (1, 0, 0) to 
���� �

12 update �� � using �� ��� and ���� �
global transforms is performed in the order of vertex in-
dex basically as in the initialization method in Algorithm
2. When a local constraint is applied to vertex i, we even-
tually need to use wTi. Because of the serial dependency as
in Equation (1), the process should be serial and it prohibits
from exploiting massive parallel threads in GPU architec-
ture.

However, since all local and global transforms in method
1 are always accurate, the simulation quality is very nice and
we use the method 1 as a standard to check the performance
and quality of other methods.

In method 2 presented in Algorithm 4, we use wTtempi to
decouple the dependency. It is basically Jacobi-style itera-
tion. This method is fully parallel in vertex-level. In line 6 of
Algorithm 4, threads synchronization is placed so all threads
can use the latest wTtempi.

Algorithm 4: Update local and global transforms (Method 2)
1 set number of iterations
2 for iteration ← 0 to number of iterations
3 for each strand in total hair
4 for i ← 0 to number of vertices in strand
5 ������ � ← �� �
6 sync threads
7 for each strand in total hair
8 for i ← 0 to number of vertices in strand
9 if i is 0 or 1 then
10 update �� � and �� � and continue
11 else
12 compute ��	� �
13

apply a constraint to ��	� and �� using ��	� �, 
������ �	� and �� 


14 compute ��	� �
15 update ��	� � by rotation from vector (1, 0, 0) to ��	� �
16 update �� � using ������ �	� and ��	� �

In method 3 presented in Algorithm 5, we skip updating
local and global transforms and reuse the rest-state trans-
forms. Compared to method 1 and 2, the updated position
can be wrong in the first iteration. However it is correct for
vertex 2 which is the first vertex simulated in strand. In a

Algorithm 5: Update local and global transforms (Method 3)
1 set number of iterations

2 for iteration ← 0 to number of iterations

3 for each strand in total hair

4 for i ← 0 to number of vertices in strand

5 compute ���� �
6

apply a constraint to ���� and �� using ���� �, �� ����
and �� �

few iterations, the updated position becomes correct grad-
ually because the local and global transforms get corrected
by propagation from vertex 0. Thanks to the position-based
dynamics, we do not accumulate any forces. We only update
the positions and intermediate positions would not matter as
long as the final position update is correct.

Because we set the number of iterations as a small number
such as 3 or 4, method 3 may not converge to method 1 and
local and global transforms may be incorrect. However, the
visual artifact is not much noticeable especially in the fast
moving animation.

5. GPU Implementation

We use compute shader in DirectX 11 to run hair simulation
in the GPU. Each thread group takes care of one hair strand
and each thread in the thread group handles each vertex or a
group of vertices in the same batch.

For local shape and edge length constraints, batching is
necessary because we need to avoid updating the same posi-
tions from the different threads. For a complex mesh, batch-
ing becomes complicated; it is closely related to the coloring
problem. Thanks to the simple structure of hair polyline, we
can simply create batches by grouping vertices following the
order of vertex indices.

Initially we pass information such as vertex position, local
and global transforms and edge rest lengths to global mem-
ory in the GPU. When thread kernel gets called, it loads that
information into shared memory to take advantage of fast
access to shared memory.

In Figures 1a and 1b, hair strands are grouped into three
regions (front, middle/top, and ponytail). Each region is as-
signed different simulation parameters such as stiffness or
number of iterations for local shape constraints. Having re-
gions helps designers have more subtle controls. It is possi-
ble to have more regions without any impact on GPU perfor-
mance.

6. Results and Conclusion

We have presented three methods to update local and global
transforms. As we can see in Figure 5, those methods pro-
duce visually satisfying simulation results. With local and
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global transforms, we apply local and global shape con-
straints and simulate various hair styles in massive parallel
environment.

Table 2 shows simulation results tested on an AMD
PhenomTMII X4 955 processor running at 3.21 GHz and
AMD RadeonTMHD 7970 and AMD FireProTMW8000
GPU cards. With the same simulation parameters, method 3
is 5 to 29 times faster than method 1. In terms of visual qual-
ity, method 1 shows the smoothest simulation result. Method
2 can be as smooth as method 1 if a high number of itera-
tions is used. In our experiments, we used small iterations.
As a result, the local and global transforms are not as accu-
rate as in method 1 and the visual quality is lower than that.
Method 3 shows some jagged strands but is acceptable for
real-time games.

With simulation time results and visual qualities, it is
possible to support LOD-style simulation. We can choose
method 1 for close-up scenes and method 2 or 3 for distant
scenes.

In Table 2, model 3 needs more iterations for edge length
and local shape constraints because its hair style is wavier
than other models. Also it has many more vertices. Those
are the reasons the simulation takes more time than other
models.

Figure 4 shows the user interface that allows the user to
change simulation and rendering parameters interactively.
By controlling stiffness, global constraint range, number
of iterations and damping, various hair conditions such as
heavy or wet can be simulated as in Figure 6.

For future work, we would like to add inter-collision han-
dling to achieve more realistic simulation. As an extension,
fur or vegetation will be interesting research topics.
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Strands Total vertices Collision objects

Model 1 19,776 221,078 3 spheres

Model 2 20,000 259,993 3 spheres

Model 3 20,000 1,373,047 3 spheres

Table 1: Model 1 is Figures 1a and 1b. Model 2 is Figure 1c.
Model 3 is Figure 1d.

Edge length 
constraint 
iterations

Local shape
constraint 
iterations

Ave. simulation time per frame
(milliseconds)

AMD Radeon 
HD 7970

AMD FirePro
W8000

Model 1 Method1 2 3 4.59 5.32

Method2 2 3 1.22 1.44

Method3 2 3 0.78 0.94

Model 2 Method1 2 3 5.32 6.28

Method2 2 3 1.24 1.46

Method3 2 3 0.80 0.95

Model 3 Method1 3 4 62.38 73.84

Method2 3 4 3.21 3.81

Method3 3 4 2.11 2.51

Table 2: Simulation results

Figure 4: User interface
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